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Abstract. Let G= (V ,E) be a graph and let S ⊆V . The set S is a packing in G if the vertices
of S are pairwise at distance at least three apart in G. The set S is a dominating set (DS)
if every vertex in V −S is adjacent to a vertex in S. Further, if every vertex in V −S is also
adjacent to a vertex in V − S, then S is a restrained dominating set (RDS). The domina-
tion number of G, denoted by γ (G), is the minimum cardinality of a DS of G, while the
restrained domination number of G, denoted by γr(G), is the minimum cardinality of a RDS
of G. The graph G is γ -excellent if every vertex of G belongs to some minimum DS of G.
A constructive characterization of trees with equal domination and restrained domination
numbers is presented. As a consequence of this characterization we show that the following
statements are equivalent: (i) T is a tree with γ (T )= γr(T ); (ii) T is a γ -excellent tree and
T �=K2; and (iii) T is a tree that has a unique maximum packing and this set is a dominat-
ing set of T . We show that if T is a tree of order n with � leaves, then γr(T )� (n+�+1)/2,
and we characterize those trees achieving equality.

Mathematics Subject Classification: 05C69

Key words: domination, domination excellent trees, restrained domination

1. Introduction

In this paper, we continue the study of restrained domination in trees
started in [3,5,7]. For a graph G = (V ,E), a set S is a dominating set if
every vertex in V − S has a neighbor in S. The domination number γ (G)

is the minimum cardinality of a dominating set of G. We call a dom-
inating set of cardinality γ (G) a γ (G)-set and use similar notation for
other parameters. An independent dominating set is a dominating set that
is independent, and the independent domination number i(G) is the mini-
mum cardinality of an independent dominating set of G. Domination and
its many variations have been surveyed in [9,10].

In this paper we study a variation on the domination theme called
restrained domination, introduced by Telle and Proskurowski [14], albeit
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indirectly, as vertex partitioning problem and further studied in [3–5,7,8].
A set S ⊆ V is a restrained dominating set (RDS) if every vertex not in S

is adjacent to a vertex in S and to a vertex in V − S. Every graph has
a RDS, since S = V is such a set. The restrained domination number of
G, denoted by γr(G), is the minimum cardinality of a RDS of G. Clearly,
γ (G)�γr(G). If γ (G)=γr(G), then we call G a (γ, γr)-graph.

A graph G is called γ -excellent (respectively, i-excellent) if every ver-
tex of G belongs to some γ (G)-set (respectively, some i(G)-set). Results
on γ -excellent trees and i-excellent trees can be found in [1,6,11,13] and
elsewhere.

In general we follow the notation and graph theory terminology in [2,9].
Specifically, let G= (V ,E) be a graph with vertex set V of order n and edge
set E. For any vertex v ∈V , the open neighborhood of v is the set N(v)=
{u∈V |uv ∈E}, and its closed neighborhood is the set N [v]=N(v)∪{v}. For
a set S ⊆V , its open neighborhood is the set N(S)=∪v∈SN(v) and its closed
neighborhood is the set N [S] =N(S)∪S. A vertex w ∈V is a private neigh-
bor of v (with respect to S) if N [w] ∩S ={v}; and the private neighbor set
of v with respect to S, denoted pn(v, S), is the set of all private neighbors
of v. If S is a γ (G)-set, then pn(v, S) �=∅ for each v ∈S. If A,B ⊆V , then
the set B is said to dominate the set A if A⊆N [B]. In particular, if A=V ,
then B is a dominating set of G.

For ease of presentation, we mostly consider rooted trees. For a vertex v

in a (rooted) tree T , we let C(v) and D(v) denote the set of children and
descendants, respectively, of v, and we define D[v]=D(v)∪{v}. The maxi-
mal subtree at v is the subtree of T induced by D[v], and is denoted by Tv.
A leaf of T is a vertex of degree 1, while a support vertex of T is a vertex
adjacent to a leaf. A strong support vertex is adjacent to at least two leaves.
A double star is a tree with exactly two vertices that are not leaves. A tree
on one vertex is denoted by K1 and a tree on two vertices by K2.

We will need the following fact from [12]. A subset S ⊆ V is a packing
in G if the vertices of S are pairwise at distance at least three apart in G.
The packing number ρ(G) is the maximum cardinality of a packing in G.

THEOREM 1. (Moon and Meir [12]) For a tree T , γ (T )=ρ(T ).

Our aim in this paper is twofold: First to establish a sharp upper bound
on the restrained domination number of a tree in terms of its order and
the number of leaves, and second to give a characterization of (γ, γr)-trees.
More precisely, we show that if T is a tree of order n with � leaves, then
γr(T ) � (n + � + 1)/2, and we characterize those trees achieving equality.
A constructive characterization of (γ, γr)-trees is presented. As a conse-
quence of this characterization we show that the following statements are
equivalent: (i) T is a (γ, γr)-tree; (ii) T is a γ -excellent tree and T �=K2; and
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(iii) T is a tree that has a unique ρ(T )-set and this set is a dominating set
of T .

2. Upper bounds

Since every leaf of a tree belongs to every RDS in the tree, a natural ques-
tion is to find a sharp upper bound on the restrained domination num-
ber of a tree in terms of its order and the number of leaves. The following
result establishes such a bound.

THEOREM 2. If T is a tree of order n with � leaves, then γr(T )� (n+�+
1)/2 with equality if and only if T is a nontrivial star.

Proof. We proceed by induction on n. The base case when n= 1 is triv-
ial. Assume then that n�2 and that the result holds for all trees of order
less than n. Let T be a tree of order n with � leaves. If T is a star, then
n=�+1 and γr(T )= (n+�+1)/2. If T is a double star, then n=�+2 and
γr(T )= l < (n+ �+ 1)/2. Hence we may assume that diam(T )� 4 (and so,
n�5).

Suppose T has a strong support vertex w. Let v be a leaf-neighbor of w,
and let T ′ =T −v have order n′ with �′ leaves. Then, n′ =n−1 and �′ =�−
1. Since T is not a star and since w is a support vertex of degree at least 2
in T ′, the tree T ′ is not a nontrivial star. Applying the inductive hypothe-
sis to T ′, γr(T

′)� (n′ +�′)/2� (n+�−2)/2. Any γr(T
′)-set can be extended

to a RDS of T by adding to it the vertex v, whence γr(T )� (n+ �)/2, as
desired. Thus we may assume that T has no strong support vertex.

Let T be rooted at a leaf r of a longest path P . Let P be a r–u path,
and let v be the neighbor of u. Further, let w denote the parent of v on
this path, and let y denote the parent of w. Then, u is a leaf of T and
degT (v)=2. We consider two possibilities depending on the degree of w.

Case 1. Suppose degT(w)=2. Let T ′ = T − {u, v,w} have order n′ and �′

leaves. Then, n′ =n−3�2. Suppose y is a leaf of T ′. Then, �′ = �. Apply-
ing the inductive hypothesis to T ′, γr(T

′) � (n′ + �′ + 1)/2 = (n + � − 2)/2.
Any γr(T

′)-set can be extended to a RDS of T by adding to it the ver-
tex u, whence γr(T ) � (n + �)/2, as desired. Hence we may assume that y

is not a leaf in T ′. Thus, �′ =�−1 and since y cannot be a strong support
vertex, T ′ is not a star. Applying the inductive hypothesis to T ′, γr(T

′) �
(n′ +�′)/2� (n+�−4)/2. Let S ′ be a γr(T

′)-set. If y ∈S ′, let S =S ′ ∪ {u}. If
y /∈S ′, let S =S ′ ∪ {u, v}. In both cases, S is a RDS of T , whence γr(T )�
γr(T

′)+2� (n+�)/2.
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Case 2. Suppose degT(w)���3. If w is a support vertex, let z denote the
leaf-neighbor of w, and let T ′ = T − z have order n′ with �′ leaves. Then,
n′ =n−1 and �′ = �−1. Since diam(T ′)�4, T ′ is not a star. Hence apply-
ing the inductive hypothesis to T ′, γr(T

′)� (n′ + �′)/2 = (n+ �− 2)/2. Any
γr(T

′)-set can be extended to a RDS of T by adding to it the vertex z,
whence γr(T )� (n+�)/2, as desired. Thus we may assume that every child
of w is a support vertex of degree 2.

Let k = degT (w) − 1 � 2. Let T ∗ = T − V (Tw) have order n∗ and �∗ leaves.
Then, n∗ =n−2k −1. Since diam(T )�4, T ∗ is a nontrivial tree. If T ∗ is a star,
then our earlier assumptions imply that T ∗ ∈ {P2, P3} and that y is a leaf of T ∗,
and the desired result follows readily. Hence we may assume that T ∗ is not a
star. Applying the inductive hypothesis to T ∗, γr(T

∗)� (n∗ +�∗)/2.
Suppose y is a leaf of T ∗. Then, �∗ = �− k + 1, and so γr(T

∗)� (n+ �−
3k)/2. Any γr(T

∗)-set can now be extended to a RDS of T by adding to it
the k leaves in the subtree Tw, whence γr(T )� (n+ �− k)/2 <(n+ �)/2, as
desired. On the other hand, if y is not a leaf of T ∗, then �∗ =�−k, and so
γr(T

∗)� (n+�−3k −1)/2. Any γr(T
∗)-set can now be extended to a RDS

of T by adding to it the k leaves in the subtree Tw and the vertex v, whence
γr(T )� (n+�+1−k)/2<(n+�)/2, as desired.

3. (γ ,γ r)-trees

Several characterizations of (γ, γr)-trees are given in [7]. The characteriza-
tion we present here is a constructive characterization using labellings that
is simpler than those presented in [7].

We define a labeling of a tree T as a function S:V (T )→{A,B}. The label of
a vertex v is also called its status, denoted sta(v). A labelled tree is denoted by
a pair (T , S). We denote the sets of vertices of status A and B by SA(T ) and
SB(T ), respectively, or simply by SA and SB if the tree T is clear from context.

By a labeled K1 we shall mean a K1 whose vertex is labelled with status
B. Let T be the family of trees that can be labelled so that the resulting
family of labelled trees contain a labeled K1 and is closed under the two
operations O1 and O2 listed below, which extend the tree T by attaching a
tree to the vertex v ∈V (T ), called the attacher.

• Operation O1. Attach to a vertex v of status A a path v, x, y where sta(x)=
A and sta(y)=B.
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• Operation O2. Attach to a vertex v of status B a path v, x, y, z where
sta(x) = sta(y) = A and sta(z) = B.

Before presenting our main result of this section, we prove the following
three lemmas.

LEMMA 3. Let T ∈T . Then the following five properties hold:

(a) the set SB is a packing;
(b) every v ∈SA is adjacent to at least one vertex in SA and to exactly one

vertex in SB;
(c) SB is a γ (T )-set, a ρ(T )-set, and a γr(T )-set;
(d) SB is the unique γr(T )-set;
(e) SB is the unique ρ(T )-set.

Proof. Properties (a) and (b) are immediate from the way in which the
family T is constructed. These two properties imply that SB is a RDS of T .
Hence, by Theorem 1, |SB |�ρ(T )=γ (T )�γr(T )� |SB |. Consequently, we
must have equality throughout this inequality chain. In particular, γ (T )=
γr(T )=|SB | and property (c) follows.

To prove property (d), let T = (V ,E) and let R be a γr(T )-set. Since R is
a dominating set, |R ∩N [v]|� 1 for each v ∈SB . By (c), |R|= |SB | and the
sets R∩N [v], where v∈SB , partition V (T ). Consequently, |R∩N [v]|=1 for
each v∈SB . We show that R=SB . Suppose that R contains a vertex v1 ∈SA.
Let v2 be the unique vertex in SB adjacent to v1. Then, R ∩ N [v2] = {v1}.
Since R is a RDS, there is a vertex v3 ∈ V − R adjacent to v2. Since the
set SB is a packing, v3 ∈ SA. Now since R is a dominating set, there is a
vertex v4 ∈R adjacent to v3. Necessarily, v4 ∈SA. Let v5 be the unique ver-
tex in SB adjacent to v4. Then, R ∩ N [v5] = {v4}. Since R is a RDS, there
is a vertex v6 ∈SA −R adjacent to v5. Continuing in this way, we construct
an infinite path v1, v2, v3, . . . , contradicting the fact that T has finite order.
Hence, R =SB .

To prove property (e), we proceed by induction on |SB(T )|. The base
case when |SB | = 1 is immediate since then T is a labelled K1. Let k �
2 and suppose that for all trees T ′ ∈ T with |SB(T ′)| < k that SB(T ′) is
the unique ρ(T ′)-set. Let T ∈ T have |SB | = k. Then, T can be obtained
from a sequence T1, T1, . . . , Tm =T of trees, where T1 is a labelled K1 and
T = Tm, and Ti+1 can be obtained from Ti by operation O1 or O2 for
i =1, . . . ,m−1. Let T ′ =Tm−1, and let D be a ρ(T )-set. Then, T ′ ∈T . We
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consider two possibilities depending on whether T is obtained from T ′ by
operation O1 or O2.

Case 1. T is obtained from T′ by operation O1. Suppose T is obtained from
T ′ by adding a path x, y and the edge vx where v ∈V (T ′) and sta(v)=A.
Hence, sta(x) = A and sta(y) = B. By property (c), ρ(T ) = |SB(T )|. Since
D is a maximum packing, |D|= |SB | and |D ∩ {v, x, y}|= 1. If v ∈D, then
D is a packing in T ′ of cardinality |SB(T )| = |SB(T ′)| + 1, and so ρ(T ′)�
|SB(T ′)|+1, contradicting property (c). Hence, |D∩{x, y}|=1. Let D′ =D∩
V (T ′). Then, |D′|= |SB(T )|−1=|SB(T ′)|. By property (c), ρ(T ′)=|SB(T ′)|,
and so D′ is a ρ(T ′)-set. Applying the inductive hypothesis to T ′, we have
D′ =SB(T ′). By property (b), the vertex v is adjacent to a vertex in SB(T ′),
and so x /∈D. Thus, y ∈D, whence D =SB(T ′)∪{y}=SB , as desired.

Case 2. T is obtained from T′ by operation O2. Suppose T is obtained
from T ′ by adding a path x, y, z and the edge vx, where v ∈ V (T ′)
and sta(v) = B. Hence, sta(x) = sta(y) = A and sta(z) = B. Since D

is a maximum packing, |D ∩ {x, y, z}| = 1. Let D′ = D ∩ V (T ′). Then,
|D′|= |SB(T )|−1=|SB(T ′)|, and so by property (c), D′ is a ρ(T ′)-set.
Applying the inductive hypothesis to T ′, we have D′ = SB(T ′). In particu-
lar, v ∈D′, whence D =SB(T ′)∪{z}=SB , as desired.

In both Cases 1 and 2, we have D=SB , as desired. This establishes prop-
erty (e).

LEMMA 4. If a tree T has a unique ρ(T )-set and this set is a dominating
set of T , then T is a (γ, γr)-tree.

Proof. Let T = (V ,E) and let S be the unique ρ(T )-set that is also a
dominating set of T . Let u∈V −S. Since S is a dominating set, u is dom-
inated by a vertex v ∈ S. By the uniqueness of S, the set (S −{v})∪ {u} is
not a packing in T . Thus the vertex u must be at distance 2 from some ver-
tex of S −{v}, and therefore u is adjacent to some other vertex of V − S.
Hence every vertex in V − S is adjacent to some other vertex of V − S,
whence the dominating set S of T is also a RDS of T . Thus, γr(T )� |S|=
ρ(T )=γ (T )�γr(T ). Consequently, we must have equality throughout this
inequality chain. In particular, γ (T )=γr(T ), i.e., T is a (γ, γr)-tree.

LEMMA 5. If T is a (γ, γr)-tree, then T ∈T .

Proof. We proceed by induction on the order n of a (γ, γr)-tree T . The
result holds true for T = K1. This establishes the base case. Assume then
that n�2 and that if T ′ is a (γ, γr)-tree of order less than n, then T ∈T ′.
Let T be a (γ, γr)-tree of order n. Then, T has no strong support vertex
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and every γr(T )-set contains all the leaves of T and no support vertex of
T . Further, by Theorem 2 in [7], every γr(T )-set is a packing.

Since no star is a (γ, γr)-tree, diam(T )� 3. If diam(T )= 3, then T =P4

and the desired result holds. Hence we may assume that diam(T )� 4. Let
T be rooted at an leaf r of a longest path P . Let P be a r–u path, and let
v be the neighbor of u. Further, let w denote the parent of v on this path,
and let y denote the parent of w. Then, u is a leaf of T and degT (v)=2.
Let S be a γr(T )-set. Then, S is a packing in T containing all the leaves. In
particular, u∈S and {v,w}∩S =∅. We consider two possibilities depending
on the degree of w.

Case 1. Suppose degT(w) = 2. Then, y ∈ S. Let T ′ = T − {u, v,w}. Then,
γ (T ′) = γ (T ) − 1. Since S − {u} is a RDS of T ′, γr(T

′) � |S| − 1 = γr(T ) −
1. Hence, γr(T

′) � γ (T ′) = γ (T ) − 1 = γr(T ) − 1 � γr(T
′). Consequently, we

must have equality throughout this inequality chain. In particular, γ (T ′)=
γr(T

′) and S −{u} is a γr(T
′)-set. Thus, T ′ is a (γ, γr)-tree. By the induc-

tion hypothesis, T ′ ∈T . By Lemma 3, SB(T ′) is the unique γr(T
′)-set. Thus,

S − {u} = SB(T ′). Since y ∈ S, the vertex y has status B in T ′. Hence by
operation O2, our labelling of T ′ can be extended to a labelling of T so
that T ∈T .

Case 2. Suppose degT(w)��� 3. Let T ′ = T − {u, v}. Since w is itself a sup-
port vertex or is adjacent to a support vertex other than v, it follows
readily that γ (T ′) = γ (T ) − 1. We show next that γr(T

′) � γr(T ) − 1. If
w is adjacent to a leaf z, then z ∈ S and so, since S is a packing, y /∈
S. On the other hand, if w is not a support vertex, then S ∩ N [w] =
{y}. In both cases, S − {u} is a RDS of T ′. Hence, γr(T

′) � γr(T ) − 1.
Thus, γr(T

′)�γ (T ′)=γ (T )−1=γr(T )−1�γr(T
′). Consequently, we must

have equality throughout this inequality chain. In particular, γ (T ′)=γr(T
′)

and S − {u} is a γr(T
′)-set. Thus, T ′ is a (γ, γr)-tree. By the induction

hypothesis, T ′ ∈ T . By Lemma 3, SB(T ′) is the unique γr(T
′)-set. Thus,

S − {u} = SB(T ′). Since w /∈ S, the vertex w has status A in T ′. Hence
by operation O1, our labelling of T ′ can be extended to a labelling of T

so that T ∈T .

LEMMA 6. If T is a (γ, γr)-tree, then T is a γ -excellent tree and T �=K2.

Proof. By Theorem 8, T ∈ T . By Theorem 3 in [11], the family T is a
subfamily of the family of i-excellent trees, and so the tree T ∈T is i-excel-
lent. By Lemma 3, SB is an independent dominating set of T , and so |SB |=
γ (T ) � i(T ) � |SB |. Hence we must have equality throughout this inequal-
ity chain. In particular, γ (T ) = i(T ). Thus the i-excellent tree T is also a
γ -excellent tree. Since T is a (γ, γr)-tree, T �=K2.
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LEMMA 7. If T is a γ -excellent tree and T �=K2, then T is a (γ, γr)-tree.

Proof. We proceed by induction on the order n of a γ -excellent tree T .
If n=1, then the desired result holds. Since no star of order at least 3 is a
γ -excellent tree, diam(T )� 3. If diam(T )= 3, then T =P4 and the desired
result holds. This establishes the base cases. Assume then that n � 5 and
that every γ -excellent tree of order at least 3 and less than n is a (γ, γr)-
tree. Let T be a γ -excellent tree of order n. Then, diam(T )� 4. Let T be
rooted at a leaf r of a longest path P . Let P be a r–u path, and let v be
the neighbor of u. Further, let w denote the parent of v on this path, and
let x denote the parent of w. Then, u is a leaf of T . Since T is γ -excellent,
T has no strong support vertex. Hence, degT (v)=2.

We now consider three possibilities. In all cases, we prune the tree T to a
γ -excellent tree T ′. By the inductive hypothesis, T ′ is a (γ, γr)-tree. By The-
orem 8, T ′ ∈T . By Lemma 3, there is a unique γr(T

′)-set that is a packing
and contains all the leaves of T ′. In each of the three cases, we let S ′ be
such a γr(T

′)-set. We then show that S ′ can be extended to a RDS of car-
dinality γ (T ), whence T is a (γ, γr)-tree. Notice that should T ′ =K2, then
T is, in all cases, not a γ -excellent tree.

Case 1. Suppose degT(w) = 2. Let T ′ =T −{u, v,w}. Any γ (T ′)-set can be
extended to a dominating set of T by adding to it the vertex v, and so
γ (T )� γ (T ′)+ 1. On the other hand, let S be a γ (T )-set containing v. If
w ∈ S, then we can simply replace the vertex w in S with the vertex x.
Hence we may assume w /∈S. Thus, S −{v} is a dominating set of T ′, and
so γ (T ′)� |S|−1=γ (T )−1. Consequently, γ (T ′)=γ (T )−1.

We show that T ′ is a γ -excellent tree. Let z∈V (T ′). Since T is γ -excel-
lent, there is a γ (T )-set Sz that contains the vertex z. If u∈Sz, then we can
replace u in Sz with the vertex v. Hence we may assume v ∈Sz. If w ∈Sz,
then we can replace the vertex w in Sz with the vertex x. Hence we may
assume w /∈ Sz. Thus, Sz − {v} is a dominating set of T ′ that contains z.
Since |Sz| − 1 = γ (T ) − 1 = γ (T ′), the vertex z is contained in a γ (T ′)-set.
Since z is an arbitrary vertex of T ′, the tree T ′ is therefore a γ -excellent
tree.

We show that x ∈ S ′ (where S ′ is the γr(T
′)-set defined earlier). Let Sw

be a γ (T )-set containing the vertex w. If u ∈ Sw, then we can replace
u in Sw with the vertex v. Hence we may assume v ∈ Sw. By the mini-
mality of the set Sw, pn(w,Sw) = {x}. This implies that the vertex x is
not a support vertex and has no child that is a support vertex. Hence
every leaf-descendant of x is at distance 3 from x. Hence it follows
from the properties of the set S ′ (that is both a RDS and a packing
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containing all leaves in T ′) that x ∈ S ′ (irrespective of whether x is a
leaf in T ′ or not).

Since x ∈ S ′, the set S ′ ∪ {u} is a RDS of T , and so γ (T ) � γr(T ) �
|S ′|+1=γr(T

′)+1=γ (T ′)+1=γ (T ). Consequently, we must have equality
throughout this inequality chain. In particular, γ (T )=γr(T ), and so T is a
(γ, γr)-tree.

Case 2. Suppose degT(w)���3 and w is a support vertex. Let T ′ =T −{u, v}.
Any γ (T ′)-set can be extended to a dominating set of T by adding to it
the vertex v, and so γ (T )�γ (T ′)+1. On the other hand, let S be a γ (T )-
set containing w. We may assume v ∈S. Thus, S −{v} is a dominating set
of T ′, and so γ (T ′)� |S|−1=γ (T )−1. Consequently, γ (T ′)=γ (T )−1.

We show that T ′ is a γ -excellent tree. Let z∈V (T ′). Since T is γ -excel-
lent, there is a γ (T )-set Sz that contains the vertex z. We may assume that
v∈Sz. Since Sz contains either w or the leaf-neighbor of w, the set Sz −{v}
is a dominating set of T ′ that contains z. Since |Sz|−1=γ (T )−1=γ (T ′),
the vertex z is contained in a γ (T ′)-set, and so T ′ is a γ -excellent tree.

Since the γr(T
′)-set S ′ is a packing and contains all the leaves of T ′, the

set S ′ contains the leaf-neighbor of w, and so w /∈ S ′. Hence the set S ′ ∪
{u} is a RDS of T , and so γ (T )�γr(T )� |S ′|+1=γr(T

′)+1=γ (T ′)+1=
γ (T ). Consequently, γ (T )=γr(T ) and T is a (γ, γr)-tree.

Case 3. Suppose degT(w)���3 and w is not a support vertex. Then each child
of w is a support vertex of degree 2. Thus the maximal subtree Tw of T

rooted at w is obtained from a star K1,k, where k=degT (w)−1�2, by sub-
dividing each edge exactly once.

Let T ′ =T −V (Tw). Any γ (T ′)-set can be extended to a dominating set
of T by adding to it the set C(w) of k children of w, and so γ (T )�γ (T ′)+
k. On the other hand, let S be a γ (T )-set containing the support vertices
of T . Then, C(w)⊂S. If w∈S, then we can simply replace the vertex w in
S with the vertex x. Hence we may assume w /∈S. Thus, S −C(w) is a dom-
inating set of T ′, and so γ (T ′)� |S|− k = γ (T )− k. Consequently, γ (T ′)=
γ (T )−k.

We show that T ′ is a γ -excellent tree. Let z∈V (T ′). Since T is γ -excel-
lent, there is a γ (T )-set Sz that contains the vertex z. We may assume
C(w)⊂Sz. If w ∈Sz, then we can replace the vertex w in Sz with the ver-
tex x. Hence we may assume w /∈ Sz. Thus, Sz −C(w) is a dominating set
of T ′ that contains z. Since |Sz −C(w)|= γ (T )− k = γ (T ′), the vertex z is
contained in a γ (T ′)-set, and so T ′ is a γ -excellent tree.
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We show that x ∈S ′. Let Sw be a γ (T )-set containing the vertex w. We
may assume C(w)⊂ Sw. By the minimality of the set Sw, pn(w,Sw)={x}.
This implies that the vertex x is not a support vertex and has no child
that is a support vertex. Hence every leaf-descendant of x is at distance 3
from x. Hence it follows from the properties of the set S ′ (that is both a
RDS and a packing containing all leaves in T ′) that x ∈S ′ (irrespective of
whether x is a leaf in T ′ or not).

Since x ∈S ′, the set S ′ can be extended to a RDS of T by adding to it all
k leaf-descendants of w, and so γ (T )�γr(T )� |S ′|+k=γr(T

′)+k=γ (T ′)+
k = γ (T ). Consequently, we must have equality throughout this inequality
chain. In particular, γ (T )=γr(T ), and so T is a (γ, γr)-tree.

As an immediate consequence of Lemmas 3–7 we have our main result.

THEOREM 8. Let T be a tree. Then the following statements are equivalent:

(i) T ∈T ;
(ii) T has a unique ρ(T )-set and this set is a dominating set of T ;

(iii) T is a (γ, γr)-tree;
(iv) T is γ -excellent and T �=K2.

Proof. By Lemma 3, (i) ⇒ (ii). By Lemma 4, (ii) ⇒ (iii). By Lemma 5,
(iii) ⇒ (i). By Lemma 6, (iii) ⇒ (iv). By Lemma 7, (iv) ⇒ (iii).

We close with the remark that there do exist trees T with unique ρ(T )-
sets that are not (γ, γr)-trees. For example, attach to each vertex of a path
P4 a pendant edge (the resulting tree is called the corona coro(P4) of P4)
and then subdivide the edge joining the two vertices of maximum degree
exactly once.
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