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Abstract. Let G=(V, E) be a graph and let SCV. The set S is a packing in G if the vertices
of S are pairwise at distance at least three apart in G. The set S is a dominating set (DS)
if every vertex in V — S is adjacent to a vertex in S. Further, if every vertex in V — S is also
adjacent to a vertex in V — S, then S is a restrained dominating set (RDS). The domina-
tion number of G, denoted by y(G), is the minimum cardinality of a DS of G, while the
restrained domination number of G, denoted by y,(G), is the minimum cardinality of a RDS
of G. The graph G is y-excellent if every vertex of G belongs to some minimum DS of G.
A constructive characterization of trees with equal domination and restrained domination
numbers is presented. As a consequence of this characterization we show that the following
statements are equivalent: (i) 7 is a tree with y(T)=y,(T); (ii)) T is a y-excellent tree and
T # K>; and (iii) T is a tree that has a unique maximum packing and this set is a dominat-
ing set of T. We show that if T is a tree of order n with ¢ leaves, then y,(T) < (n+£+1)/2,
and we characterize those trees achieving equality.
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1. Introduction

In this paper, we continue the study of restrained domination in trees
started in [3,5,7]. For a graph G=(V, E), a set S is a dominating set if
every vertex in V — § has a neighbor in S. The domination number y(G)
is the minimum cardinality of a dominating set of G. We call a dom-
inating set of cardinality y(G) a y(G)-set and use similar notation for
other parameters. An independent dominating set is a dominating set that
is independent, and the independent domination number i(G) is the mini-
mum cardinality of an independent dominating set of G. Domination and
its many variations have been surveyed in [9,10].

In this paper we study a variation on the domination theme called
restrained domination, introduced by Telle and Proskurowski [14], albeit
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indirectly, as vertex partitioning problem and further studied in [3-5,7,8].
A set SCV is a restrained dominating set (RDS) if every vertex not in S
is adjacent to a vertex in S and to a vertex in V — S. Every graph has
a RDS, since S=7V is such a set. The restrained domination number of
G, denoted by y,(G), is the minimum cardinality of a RDS of G. Clearly,
y(G) <y-(G). If y(G)=y,(G), then we call G a (y, y,)-graph.

A graph G is called y-excellent (respectively, i-excellent) if every ver-
tex of G belongs to some y(G)-set (respectively, some i(G)-set). Results
on y-excellent trees and i-excellent trees can be found in [1,6,11,13] and
elsewhere.

In general we follow the notation and graph theory terminology in [2,9].
Specifically, let G=(V, E) be a graph with vertex set V of order n and edge
set E. For any vertex v eV, the open neighborhood of v is the set N(v) =
{ueV]uveE}, and its closed neighborhood is the set N[v]=N (v) U {v}. For
a set SCV, its open neighborhood is the set N(S)=U,csN(v) and its closed
neighborhood is the set N[S]=N(S)US. A vertex w eV is a private neigh-
bor of v (with respect to S) if N[w]NS={v}; and the private neighbor set
of v with respect to S, denoted pn(v, S), is the set of all private neighbors
of v. If § is a y(G)-set, then pn(v, S)#¢@ for each ve S. If A, BCV, then
the set B is said to dominate the set A if AC N[B]. In particular, if A=V,
then B is a dominating set of G.

For ease of presentation, we mostly consider rooted trees. For a vertex v
in a (rooted) tree T, we let C(v) and D(v) denote the set of children and
descendants, respectively, of v, and we define D[v]= D(v)U{v}. The maxi-
mal subtree at v is the subtree of T induced by D[v], and is denoted by T7,.
A leaf of T is a vertex of degree 1, while a support vertex of T is a vertex
adjacent to a leaf. A strong support vertex is adjacent to at least two leaves.
A double star is a tree with exactly two vertices that are not leaves. A tree
on one vertex is denoted by K; and a tree on two vertices by K.

We will need the following fact from [12]. A subset SCV is a packing
in G if the vertices of S are pairwise at distance at least three apart in G.
The packing number p(G) is the maximum cardinality of a packing in G.

THEOREM 1. (Moon and Meir [12]) For a tree T, y(T)=p(T).

Our aim in this paper is twofold: First to establish a sharp upper bound
on the restrained domination number of a tree in terms of its order and
the number of leaves, and second to give a characterization of (y, y,)-trees.
More precisely, we show that if 7 is a tree of order n with £ leaves, then
v (T) < (n+ £+ 1)/2, and we characterize those trees achieving equality.
A constructive characterization of (y, y,)-trees is presented. As a conse-
quence of this characterization we show that the following statements are
equivalent: (i) T is a (y, y,)-tree; (i) T is a y-excellent tree and T # K»,; and
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(iii) T is a tree that has a unique p(T)-set and this set is a dominating set
of T.

2. Upper bounds

Since every leaf of a tree belongs to every RDS in the tree, a natural ques-
tion is to find a sharp upper bound on the restrained domination num-
ber of a tree in terms of its order and the number of leaves. The following
result establishes such a bound.

THEOREM 2. If T is a tree of order n with £ leaves, then y,(T)<(n+¢+
1)/2 with equality if and only if T is a nontrivial star.

Proof. We proceed by induction on n. The base case when n=1 is triv-
1al. Assume then that » >2 and that the result holds for all trees of order
less than n. Let T be a tree of order n with £ leaves. If T is a star, then
n={+1 and y,(T)=m+£+1)/2. If T is a double star, then n=¢+2 and
y,(T)=1l<m+£+1)/2. Hence we may assume that diam(7) >4 (and so,
n=>5).

Suppose T has a strong support vertex w. Let v be a leaf-neighbor of w,
and let T'=T —v have order n’ with £ leaves. Then, n'=n—1 and ¢’ =¢ —
1. Since T is not a star and since w is a support vertex of degree at least 2
in T', the tree T’ is not a nontrivial star. Applying the inductive hypothe-
sisto T/, ., (TH< (' +£)/2<(n+£—2)/2. Any y,(T’)-set can be extended
to a RDS of T by adding to it the vertex v, whence y,(T) < (n+£)/2, as
desired. Thus we may assume that 7 has no strong support vertex.

Let T be rooted at a leaf r of a longest path P. Let P be a r—u path,
and let v be the neighbor of u. Further, let w denote the parent of v on
this path, and let y denote the parent of w. Then, u is a leaf of T and
degr(v) =2. We consider two possibilities depending on the degree of w.

Case 1. Suppose degr(w)=2. Let 7'=T — {u, v, w} have order n’ and ¢
leaves. Then, n’=n—3>2. Suppose y is a leaf of T’. Then, ¢'=¢. Apply-
ing the inductive hypothesis to T/, ¥, (T < (W' +€ +1)/2=n+£—2)/2.
Any y,(T")-set can be extended to a RDS of T by adding to it the ver-
tex u, whence v, (T) < (n+¢£)/2, as desired. Hence we may assume that y
is not a leaf in 7’. Thus, £'=¢—1 and since y cannot be a strong support
vertex, T’ is not a star. Applying the inductive hypothesis to 77, y,(T') <
(n'4+0)/2<(n+€—4)/2. Let S’" be a y,(T')-set. If ye §’, let S=S"U{u}. If
vé¢ S, let S=8U{u,v}. In both cases, S is a RDS of T, whence y,(T) <
V(T +2<(n+10)/2.
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Case 2. Suppose degp(w)>3. If w is a support vertex, let z denote the
leaf-neighbor of w, and let 7' =T — z have order n’ with ¢’ leaves. Then,
n"=n—1and ¢'=¢—1. Since diam(7’) >4, T’ is not a star. Hence apply-
ing the inductive hypothesis to 77, y,(T)< (' +¢)/2=m+£—2)/2. Any
v, (T")-set can be extended to a RDS of T by adding to it the vertex z,
whence y,(T) < (n+4£)/2, as desired. Thus we may assume that every child
of w is a support vertex of degree 2.

Let k =deg;(w) —1>2. Let T*=T — V(T,) have order n* and ¢* leaves.
Then, n* =n — 2k — 1. Since diam(T') >4, T* is a nontrivial tree. If T* is a star,
then our earlier assumptions imply that 7* € { P, P;} and that y is a leaf of T*,
and the desired result follows readily. Hence we may assume that 7* is not a
star. Applying the inductive hypothesis to 7%, y, (T*) < (n* 4 €*) /2.

Suppose y is a leaf of T*. Then, £*=¢—k+1, and so y,(T*) <(n+4£—
3k)/2. Any y,(T*)-set can now be extended to a RDS of T by adding to it
the k leaves in the subtree T,,, whence v, (T)<(n+£€—k)/2<n+4£)/2, as
desired. On the other hand, if y is not a leaf of T*, then £*=¢—k, and so
V(T )< (n+£—-3k—1)/2. Any y,(T*)-set can now be extended to a RDS
of T by adding to it the k leaves in the subtree 7, and the vertex v, whence
Y(TY<(n+L€+1—k)/2<m+£)/2, as desired. ]

3. (y,y,)-trees

Several characterizations of (y, y,)-trees are given in [7]. The characteriza-
tion we present here is a constructive characterization using labellings that
is simpler than those presented in [7].

We define a labeling of a tree T as a function S: V(T) — {A, B}. The label of
a vertex v is also called its status, denoted sta(v). A labelled tree is denoted by
a pair (T, S). We denote the sets of vertices of status A and B by Ss(7) and
Sp(T), respectively, or simply by S4 and Sp if the tree T is clear from context.

By a labeled K, we shall mean a K| whose vertex is labelled with status
B. Let 7 be the family of trees that can be labelled so that the resulting
family of labelled trees contain a labeled K; and is closed under the two
operations O and O, listed below, which extend the tree T by attaching a
tree to the vertex ve V(T), called the attacher.

e Operation O;. Attach to a vertex v of status A a path v, x, y where sta(x) =
A and sta(y) = B.

01.' 4 B
T Y
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e Operation O,. Attach to a vertex v of status B a path v, x, y, z where
sta(x) = sta(y) = A and sta(z) = B.

Oy A A4 B
x Yy oz

Before presenting our main result of this section, we prove the following
three lemmas.

LEMMA 3. Let T €7T. Then the following five properties hold:

(a) the set Sp is a packing,

(b) every ve Sy is adjacent to at least one vertex in Sy and to exactly one
vertex in Sg;

(c) Sg is a y(T)-set, a p(T)-set, and a y,(T)-set;

(d) Sp is the unique y,(T)-set;

(e) Sp is the unique p(T)-set.

Proof. Properties (a) and (b) are immediate from the way in which the
family 7 is constructed. These two properties imply that Sg is a RDS of T'.
Hence, by Theorem 1, |Sp| < p(T)=y(T)<y,(T)<|Sg|. Consequently, we
must have equality throughout this inequality chain. In particular, y(7T) =
v-(T)=|Sp| and property (c) follows.

To prove property (d), let T=(V, E) and let R be a y,(T)-set. Since R is
a dominating set, |[RN N[v]| > 1 for each ve Sg. By (c), |R|=|Sg| and the
sets RN N[v], where v € Sg, partition V(T). Consequently, |[RNN[v]|=1 for
each ve Sg. We show that R=Sg. Suppose that R contains a vertex v; € S4.
Let v, be the unique vertex in Sp adjacent to v;. Then, RN N[vy]={v1}.
Since R is a RDS, there is a vertex v € V — R adjacent to v,. Since the
set Sp i1s a packing, v; € S4. Now since R is a dominating set, there is a
vertex v4 € R adjacent to vs. Necessarily, vqs € S4. Let vs be the unique ver-
tex in Sp adjacent to v4. Then, RN N[vs]={v4}. Since R is a RDS, there
is a vertex vg € S4 — R adjacent to vs. Continuing in this way, we construct
an infinite path vy, vy, v3, ..., contradicting the fact that 7T has finite order.
Hence, R = S;.

To prove property (e¢), we proceed by induction on |Sp(7T)|. The base
case when |Sp| =1 is immediate since then 7T is a labelled K;. Let k >
2 and suppose that for all trees 7' € 7 with [Sp(T")| < k that Sp(T’) is
the unique p(7')-set. Let T € 7 have |Sg| =k. Then, T can be obtained
from a sequence Ty, Ty,...,T,, =T of trees, where T} is a labelled K; and
T =T,, and T;;; can be obtained from 7; by operation O; or O, for
i=1,...,m—1. Let T"=T,,_;, and let D be a p(T)-set. Then, T'€7T. We
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consider two possibilities depending on whether 7' is obtained from 7’ by
operation O; or O,.

Case 1. T is obtained from T’ by operation O;. Suppose T is obtained from
T' by adding a path x, y and the edge vx where ve V(T’) and sta(v) = A.
Hence, sta(x) = A and sta(y) = B. By property (c), o(T) =|Sp(T)|. Since
D is a maximum packing, |D|=|Sg| and |[DN{v, x, y}|=1. If ve D, then
D is a packing in T’ of cardinality |Sg(T)|=|S(T")|+ 1, and so p(T') >
|Sg(T")|+ 1, contradicting property (c). Hence, [DN{x, y}|=1. Let D'=DnN
V(T"). Then, |D'|=|S(T)| —1=|Sp(T")|. By property (c), p(T") =|Ss(T")I,
and so D’ is a p(T')-set. Applying the inductive hypothesis to 7', we have
D'=Sp(T’). By property (b), the vertex v is adjacent to a vertex in Sg(7"),
and so x ¢ D. Thus, ye D, whence D= Sg(T')U{y}= S5, as desired.

Case 2. T is obtained from T’ by operation O,. Suppose T is obtained
from 7’ by adding a path x,y,z and the edge vx, where v € V(T')
and sta(v) = B. Hence, sta(x) = sta(y) = A and sta(z) = B. Since D
is a maximum packing, |D N{x,y,z}|=1. Let D' =D N V(T’). Then,
|D'|=|S(T)|—1=|Sp(T")|, and so by property (c), D’ is a p(T')-set.
Applying the inductive hypothesis to 7', we have D’ = Sg(T’). In particu-
lar, ve D', whence D=Sp(T")U{z}=Sp, as desired.

In both Cases 1 and 2, we have D =Sp, as desired. This establishes prop-
erty (e). O

LEMMA 4. If a tree T has a unique p(T)-set and this set is a dominating
set of T, then T is a (y,y,)-tree.

Proof Let T=(V,E) and let S be the unique p(T)-set that is also a
dominating set of T. Let ue€V — S. Since S is a dominating set, u is dom-
inated by a vertex v e S. By the uniqueness of S, the set (S — {v})U{u} is
not a packing in 7. Thus the vertex u must be at distance 2 from some ver-
tex of §—{v}, and therefore u is adjacent to some other vertex of V —S§.
Hence every vertex in V — S is adjacent to some other vertex of V — S,
whence the dominating set S of T is also a RDS of T. Thus, y,(T)<|S|=
o(T)=y(T) <y, (T). Consequently, we must have equality throughout this
inequality chain. In particular, y(T)=1y,(T), i.e., T is a (y, y,)-tree. O

LEMMA 5. If T is a (y, y,)-tree, then T €T.

Proof. We proceed by induction on the order n of a (y, y,)-tree T. The
result holds true for T = K. This establishes the base case. Assume then
that n>2 and that if 77 is a (y, y,)-tree of order less than n, then T €7".
Let T be a (y, y,)-tree of order n. Then, T has no strong support vertex
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and every y,(T)-set contains all the leaves of T and no support vertex of
T. Further, by Theorem 2 in [7], every y,(T)-set is a packing.

Since no star is a (y, y,)-tree, diam(7T) > 3. If diam(7)=3, then T = P4
and the desired result holds. Hence we may assume that diam(7) >4. Let
T be rooted at an leaf r of a longest path P. Let P be a r—u path, and let
v be the neighbor of u. Further, let w denote the parent of v on this path,
and let y denote the parent of w. Then, u is a leaf of 7 and deg,(v) =2.
Let S be a y,(T)-set. Then, S is a packing in T containing all the leaves. In
particular, u € S and {v, w}NS=@. We consider two possibilities depending
on the degree of w.

Case 1. Suppose degr(w) = 2. Then, ye S. Let T"=T — {u, v, w}. Then,
y(T")=y(T)—1. Since S—{u} is a RDS of T’, . (T <I|S|—1=y.(T) —
1. Hence, ¥, (T) 2 y(T")=y(T) — 1 =v.(T) — 1 = y.(T"). Consequently, we
must have equality throughout this inequality chain. In particular, y(T’) =
v.(T") and S —{u} is a y,(T')-set. Thus, T’ is a (y, y,)-tree. By the induc-
tion hypothesis, 7' €7. By Lemma 3, Sg(7T”’) is the unique y,(7’)-set. Thus,
S —{u} = Sp(T’). Since y € S, the vertex y has status B in 7’. Hence by
operation (O,, our labelling of T’ can be extended to a labelling of T so
that T e7.

Case 2. Suppose degr(w)> 3. Let T'=T — {u, v}. Since w is itself a sup-
port vertex or is adjacent to a support vertex other than v, it follows
readily that y(T’) = y(T) — 1. We show next that y.(T) < y,.(T) — 1. If
w is adjacent to a leaf z, then z € S and so, since S is a packing, y ¢
S. On the other hand, if w is not a support vertex, then SN N[w]=
{y}. In both cases, S — {u} is a RDS of T’. Hence, y,(T") < y.(T) — 1.
Thus, y, (T 2y (T)=y(T)—1=y.(T)—1=y,(T"). Consequently, we must
have equality throughout this inequality chain. In particular, y(T") =y, (T")
and § —{u} is a y,(T")-set. Thus, T’ is a (y, y,)-tree. By the induction
hypothesis, 7/ € 7. By Lemma 3, Sg(T’) is the unique y,(T’)-set. Thus,
S — {u} = Sp(T’). Since w ¢ S, the vertex w has status A in 7’. Hence
by operation O;, our labelling of 7’ can be extended to a labelling of T
so that Te7T. O

LEMMA 6. If T is a (y, y,)-tree, then T is a y-excellent tree and T # K».

Proof- By Theorem 8, T € 7. By Theorem 3 in [11], the family 7 is a
subfamily of the family of i-excellent trees, and so the tree T €7 is i-excel-
lent. By Lemma 3, Sp is an independent dominating set of 7', and so |Sg|=
y(T) <i(T)<|Sg|. Hence we must have equality throughout this inequal-
ity chain. In particular, y(T)=i(T). Thus the i-excellent tree T is also a
y-excellent tree. Since T is a (y, y,)-tree, T # K. O
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LEMMA 7. If T is a y-excellent tree and T # K>, then T is a (y,y,)-tree.

Proof- We proceed by induction on the order n of a y-excellent tree T.
If n=1, then the desired result holds. Since no star of order at least 3 is a
y-excellent tree, diam(7) > 3. If diam(7) =3, then T = P, and the desired
result holds. This establishes the base cases. Assume then that » > 5 and
that every y-excellent tree of order at least 3 and less than n is a (y, y,)-
tree. Let T be a y-excellent tree of order n. Then, diam(T)>4. Let T be
rooted at a leaf r of a longest path P. Let P be a r—u path, and let v be
the neighbor of u. Further, let w denote the parent of v on this path, and
let x denote the parent of w. Then, u is a leaf of 7. Since T is y-excellent,
T has no strong support vertex. Hence, deg,(v) =2.

We now consider three possibilities. In all cases, we prune the tree 7 to a
y-excellent tree 7’. By the inductive hypothesis, 7’ is a (y, y;)-tree. By The-
orem 8, T'e7. By Lemma 3, there is a unique y,(7’)-set that is a packing
and contains all the leaves of T'. In each of the three cases, we let S’ be
such a y,(T’)-set. We then show that S’ can be extended to a RDS of car-
dinality y(T), whence T is a (y, y,)-tree. Notice that should 7’ = K, then
T is, in all cases, not a y-excellent tree.

Case 1. Suppose degr(w) = 2. Let 7/=T —{u, v, w}. Any y(T’)-set can be
extended to a dominating set of 7 by adding to it the vertex v, and so
y(T)<y(T')+ 1. On the other hand, let S be a y(T)-set containing v. If
w € §, then we can simply replace the vertex w in § with the vertex x.
Hence we may assume w ¢ S. Thus, S —{v} is a dominating set of 7’, and
so y(T")<|S|—1=y(T)—1. Consequently, y(T")=y(T)— 1.

We show that 7’ is a y-excellent tree. Let z€ V(T’). Since T is y-excel-
lent, there is a y(T)-set S, that contains the vertex z. If u € S,, then we can
replace u in S, with the vertex v. Hence we may assume veS,. If weS§,,
then we can replace the vertex w in S, with the vertex x. Hence we may
assume w ¢ S,. Thus, S, — {v} is a dominating set of 7’ that contains z.
Since |S,| —1=y(T) —1=y(T’), the vertex z is contained in a y(T’')-set.
Since z is an arbitrary vertex of 7', the tree T’ is therefore a y-excellent
tree.

We show that x € S’ (where S’ is the y,(T’)-set defined earlier). Let S,
be a y(T)-set containing the vertex w. If u € S,, then we can replace
u in S, with the vertex v. Hence we may assume v € S,,. By the mini-
mality of the set S,, pn(w, S,) = {x}. This implies that the vertex x is
not a support vertex and has no child that is a support vertex. Hence
every leaf-descendant of x is at distance 3 from x. Hence it follows
from the properties of the set S’ (that is both a RDS and a packing
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containing all leaves in 7’) that x € S’ (irrespective of whether x is a
leaf in 7’ or not).

Since x € §’, the set S'U{u} is a RDS of T, and so y(T) < v.(T) <
S|+ 1=y, (TY+1=y(T")+ 1=y(T). Consequently, we must have equality
throughout this inequality chain. In particular, y(T)=v,(T), and so T is a
(v, yr)-tree.

Case 2. Suppose degp(w)>3 and w is a support vertex. Let 7' =T — {u, v}.
Any y(T’)-set can be extended to a dominating set of 7 by adding to it
the vertex v, and so y(T) <y (T’)+1. On the other hand, let S be a y(T)-
set containing w. We may assume v € S. Thus, S — {v} is a dominating set
of T, and so y(T")<|S|—1=y(T)—1. Consequently, y(T")=y(T)—1.

We show that T’ is a y-excellent tree. Let z€ V(T’). Since T is y-excel-
lent, there is a y(T)-set S, that contains the vertex z. We may assume that
veS,. Since S, contains either w or the leaf-neighbor of w, the set S, — {v}
is a dominating set of 7’ that contains z. Since |S,|—1=y(T)—1=y(T’),
the vertex z is contained in a y(7’)-set, and so T’ is a y-excellent tree.

Since the y,(T’)-set S’ is a packing and contains all the leaves of 7', the
set S’ contains the leaf-neighbor of w, and so w ¢ S’. Hence the set S’ U
{u} is a RDS of T, and so y(T) <y, (1) <|S |+ 1=y T+ 1=yT")+1=
y(T). Consequently, y(T)=v,(T) and T is a (y, y,)-tree.

Case 3. Suppose degp(w) >3 and w is not a support vertex. Then each child
of w is a support vertex of degree 2. Thus the maximal subtree T, of T
rooted at w is obtained from a star K, where k=deg,(w)—1>2, by sub-
dividing each edge exactly once.

Let 7'=T -V (T,). Any y(T’)-set can be extended to a dominating set
of T by adding to it the set C(w) of k children of w, and so y(T)<y(T")+
k. On the other hand, let S be a y(T)-set containing the support vertices
of T. Then, C(w)CS. If we S, then we can simply replace the vertex w in
S with the vertex x. Hence we may assume w ¢ S. Thus, S— C(w) is a dom-
inating set of 7’, and so y(T") <|S|—k=y(T) —k. Consequently, y(T') =
y(T)—k.

We show that 7’ is a y-excellent tree. Let z € V(T’). Since T is y-excel-
lent, there is a y(T)-set S, that contains the vertex z. We may assume
C(w)CS,. If wesS,, then we can replace the vertex w in S, with the ver-
tex x. Hence we may assume w ¢ S,. Thus, S, — C(w) is a dominating set
of T’ that contains z. Since |S, — C(w)| =y (T) —k=y(T’), the vertex z is
contained in a y(T’)-set, and so T’ is a y-excellent tree.
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We show that x € §’. Let S, be a y(T)-set containing the vertex w. We
may assume C(w) C S,. By the minimality of the set S, pn(w, Sy) = {x}.
This implies that the vertex x is not a support vertex and has no child
that is a support vertex. Hence every leaf-descendant of x is at distance 3
from x. Hence it follows from the properties of the set S’ (that is both a
RDS and a packing containing all leaves in 7’) that x € §’ (irrespective of
whether x is a leaf in T’ or not).

Since x € §’, the set S’ can be extended to a RDS of T by adding to it all
k leaf-descendants of w, and so y(T) <y, (1) L|S'|+k=y,(T")+k=y(T") +
k=y(T). Consequently, we must have equality throughout this inequality
chain. In particular, y(T)=1y,(T), and so T is a (y, y,)-tree. O

As an immediate consequence of Lemmas 3-7 we have our main result.

THEOREM 8. Let T be a tree. Then the following statements are equivalent:

) TeT;

(i1) T has a unique p(T)-set and this set is a dominating set of T,
(1) T is a (y, y,)-tree;

(iv) T is y-excellent and T # K>.

Proof. By Lemma 3, (i) = (ii). By Lemma 4, (ii) = (iii)). By Lemma 35,
(i1) = (1). By Lemma 6, (ii1)) = (iv). By Lemma 7, (iv) = (iii). O

We close with the remark that there do exist trees 7 with unique p(7T)-
sets that are not (y, y,)-trees. For example, attach to each vertex of a path
P4 a pendant edge (the resulting tree is called the corona coro(P;) of Py)
and then subdivide the edge joining the two vertices of maximum degree
exactly once.
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